作文庫>教育資訊>教育>二次函數知識點總結

二次函數知識點總結

更新時間:

  在數學中,二次函數的最高階必須是二次的。在數學中,二次函數主要研究學生對公式的應用,是數學知識的重點。二次函數知識點總結有哪些?一起來看看二次函數知識點總結,歡迎查閱!

  

  數學二次函數知識點歸納

  計算方法

  1.樣本平均數:⑴ ;⑵若 , ,…, ,則 (a―常數, , ,…, 接近較整的常數a);⑶加權平均數: ;⑷平均數是刻劃數據的集中趨勢(集中位置)的特征數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越準確。

  2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a―接近 、 、…、 的平均數的較“整”的常數);若 、 、…、 較“小”較“整”,則 ;⑶樣本方差是刻劃數據的離散程度(波動大小)的特征數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

  3.樣本標準差:

  三、 應用舉例(略)

  初三數學知識點:第四章 直線形

  ★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

  ☆ 內容提要☆

  一、 直線、相交線、平行線

  1.線段、射線、直線三者的區別與聯系

  從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。

  2.線段的中點及表示

  3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大于第三邊”)

  4.兩點間的距離(三個距離:點-點;點-線;線-線)

  5.角(平角、周角、直角、銳角、鈍角)

  6.互為余角、互為補角及表示方法

  7.角的平分線及其表示

  8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”)

  9.對頂角及性質

  10.平行線及判定與性質(互逆)(二者的區別與聯系)

  11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

  12.定義、命題、命題的組成

  13.公理、定理

  14.逆命題

  二、 三角形

  分類:⑴按邊分;

  ⑵按角分

  1.定義(包括內、外角)

  2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,

  3.三角形的主要線段

  討論:①定義②__線的交點―三角形的×心③性質

  ① 高線②中線③角平分線④中垂線⑤中位線

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

  4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

  5.全等三角形

  ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

  ⑵特殊三角形全等的判定:①一般方法②專用方法

  6.三角形的面積

  ⑴一般計算公式⑵性質:等底等高的三角形面積相等。

  7.重要輔助線

  ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

  8.證明方法

  ⑴直接證法:綜合法、分析法

  ⑵間接證法―反證法:①反設②歸謬③結論

  ⑶證線段相等、角相等常通過證三角形全等

  ⑷證線段倍分關系:加倍法、折半法

  ⑸證線段和差關系:延結法、截余法

  ⑹證面積關系:將面積表示出來

  三、 四邊形

  分類表:

  1.一般性質(角)

  ⑴內角和:360°

  ⑵順次連結各邊中點得平行四邊形。

  推論1:順次連結對角線相等的四邊形各邊中點得菱形。

  推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

  ⑶外角和:360°

  2.特殊四邊形

  ⑴研究它們的一般方法:

  ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

  ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

  ┗→菱形――↑

  ⑷對角線的紐帶作用:

  3.對稱圖形

  ⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

  4.有關定理:①平行線等分線段定理及其推論1、2

  ②三角形、梯形的中位線定理

  ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

  5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。

  6.作圖:任意等分線段。

  二次函數知識點總結

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0),對稱軸在y軸左;

  當a與b異號時(即ab0時,拋物線與x軸有2個交點。

  Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ= b^2-4ac0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象;

  當h>0,k

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a0時,拋物線向上開口;當a0),對稱軸在y軸左;

  當a與b異號時(即ab0時,拋物線與x軸有2個交點。

  Δ= b?-4ac=0時,拋物線與x軸有1個交點。

  Δ= b?-4ac


二次函數知識點總結相關文章:

教育公平的陽光遍灑神州大地

2022年度一級建造師資格考試報名

2022上半年英語四級考試報名時間

下半年四六級報名時間及考試時間

2022大學英語四級考試時間

2022年英語四級下半年報名時間

2023研究生考試時間安排

老師師德師風心得體會_師德師風心得總結大全15篇

新師德師風個人總結_2022師德師風個人總結15篇

五邑大學鄉村振興實踐團:向下扎“根”向上開“花”

二次函數知識點總結

在數學中,二次函數的最高階必須是二次的。在數學中,二次函數主要研究學生對公式的應用,是數學知識的重點。二次函數知識點總結有哪些?一起來看看二次函數知識點總結,歡...
推薦度:
點擊下載文檔文檔為doc格式

精選圖文

leyu乐鱼娱乐